AD-A272 056
LT

Automated Acquisition of Control Knowledge
to Improve the Quality of Plans

M. Alicia Pérez and Jaime G. Carbonell !
April 1993
DTIC Ve
ELECT E
@ NOVO1 1993

1}

AR
€6

\
|

\

il

|

School of Computer Scicnce
Camegic Mcllon University
Pittsburgh, PA 15213

\

|

il
6GC9C-

!
!

Abstract

Most of the work to datec on automated control-knowledge acquisition has been aimed at improving the
efficiency of planning; this work has been termed “speed-up lcaming”. The work presented here focuses
on the automated acquisition of control knowledge to guide a planner towards better solutions, i.c. (0
improve the quality of plans produced by the planncr, as its problem solving cxperience increases. To date
no work has focused on automatically acquiring knowledge to improve plan quality in planning systems.
We present a taxonomy of plan quality metrics and a first prototype that partially automates the task of
acquiring quality-cnhancing control knowledge for the PRODIGY nonlinear planncr. We arc working on
testing the effect of such control knowledge in plan quality, and developing mcthods to leam such controi
knowledge. Two complex domains, namely a transportation logistics domain, arid a machining process
planning domain, arc being used to evaluate these ideas.

B e s pee preved
This dac.msnt Las oesl appIe

for public relecse and sale; s

e imied 3 10 28 038
gistiper oD ™ — 9 ~ &

be
| e -

"This research was sponsored in part by the Avionics Laboratory, Wright Rescarch and Development Center, Acronautical
Systems Division (AFSC). U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa
Order No. 7597, and in part by a scholarship to the first author from the Ministerio de Educacion y Ciencia of Spain. The views and
conclusions ntained in this document are those of the author and should not be interpreted as representing the official policies,
either ex- . 7 sed or implied, of the U.S. Government or the Spanish Government.

BEST
AVAILABLE COPY

4

®

)
)
?)
]
b
[
3
;
Keywords: plan quality, search control knowledge, machine leaming, planning, knowledge acquisition
° ® ® ® ° ° L) .

Feoy

- -I.

PP

Contents
1 Introduction
1.1 AnExample: Plan Quality in a Process Planning Domain
2 A Taxonomy of Quality Metrics
2.1 Minimizing Exccution Cost
2.2 Maximizing Plan Robustness oo
2.3 Client Satisfaction«
2.4 Trade-Offs Among Quality Metrics
2.5 Domain-Dependent Versus Domain-Independent Metricso
2.6 Measuresof Planning COSL
2.6.1 Solution Quality Versus Problem Solving Efficiecncy
3 Solution Quality and Goal Interactions
3.1 Explicit goal interactionso
32 Quality goal interactionso
4 Background: The PRODIGY Problem Solver
4i ExamploDemdine rs . . SER EL 2 .40 BA 5. 5.0 EEEQ -B -E -E - - - -F
4.1.1 The Transportation Logistics Domain
4.1.2 The Machining Process Planning Domain
4.2 PRODIGY Decisions that Affect Plan Quality
5 Work to Date
5.1 Semi-Automated (Intcractive) Acquisition of Quality-Enhancement Control Rules
5.1.1 Geto.ga Solution from the Experto
5.1.2 Determining Where Controi Knowledge IsNeeded
5.1.3 Acquiring the Relevant Knowledge oo
5.1.4 Varations to the Algorithm oo
5.2 DetailedExamples: . . . 4 .« « 0 o5 s meE s - 9 5T P EEE - B B B B e[y e
5.2.1 A Simplc Example: Choosing Different Resources
5.2.2 Finding the Right Goal Interlcaving
5.3 Assumptionsand Limitations Lo
6 Learning Quality-Enhancing Control Rules
7 Related Work —— e = s
7.1 Work on Planning Systems and Plan Quality F_‘."_‘_L_. g 2 _J -
7.2 Work on Acquisition of Control Knowledge NTIS CCR&EL & o0 B o
7.3 Other Work on Knowledge Acquisidion for PRODIGY . | LI . (00,
[i
8 Conclusion ,
| Py i
9 Acknowledgements | By fgipm 5O
Db o |
oy T3P RCTED 8 e -
I_‘['. ' 1 di R coacnsl
| |
{
=) { i
L .]] e

10
10
11
12
13
13
13
13 ¢

14
14
15
16
16
17
18
18
20
23

24

25
25
28
29

29

29

1 Iuntroduction

The focus of this work is on the automated acquisition of scarch control knowledge for planiiing systems.
Most of the work to date on automated control-knowledge acquisition has been aimed to improve the
efficiency of planning, this work has been termed speed-up leaming. Our focus is on the acquisition
of control knowledge to guide the planner towards better solutions, i.e. to improve the quality of planys
produced by the planner.

Tlicre arc many variations on the notion of the quality of a plan in the context of classical planning
systems [Langley and Drummond, 19901, such as:

¢ the length of the solution path or the total number of actions
e the execution time of the plan
e the cnergy, or other resources, required for the plan exccution

¢ the robustness of the plan, or its ability to respond well under changing or uncertain conditions.

Human experts gather knowledge for producing better plans through experience. Here “beiter” is
defined in a context-sensitive manner as a combination of plan-quality factors such as those listed above.
It is precisely this experiential knowledge that we seck to capture from planning cxpericnce. We proposc
here to focus our attention primarily on acquiring control knowledge to guide the planner’s scarch towards
betier solutions during planning, rather than post-facto plan modification. The framework for this work is
the PRODIGY architecture.

The rest of this section gives an e.ample of plan quality in a particular domain. Seetion 2 proroses
a taxonomy of plan quality metries. Section 3 explores the relationship between plan quality and goal
interactions. Section 4 gives somc background on PRODIGY, the example domains used in this work, and
how PRODIGY's search dccisions affect plan quality. Secetion 5 describes an implemented prototype [or
semi-automated acquisition of control rules to improve plan quality in PRODIGY. Section 6 bricily prescnts
work in progress for leaming quality-enhancing control rules. Section 7 analyzes related work, and Section 8
concludes with a summary of the expecied contributions of this work !

1.1 An Example: Plan Quality in a Process Planning Domain

In the process planning phase of production manufacturing plan quality is crucial in order to minimize
both resource consumption and cxccution time. The goal of process planning is to produce plans for
machining parts given their specifications. Such planning requires taking into account both technological
and cconomical considerations [Descotte and Latombe, 1985, Doyle, 19691, for instance:

¢ It may be advantageous to cxccute several cuts on the same machine with the same lixing to reduce
the time spent setting up the work on the machines.

e Ifa hole /1| opens into another hole /15, then one is recommended machining /; belore 11 in order
to avoid the risk of damaging the drill.

'A slightly different version of this document was submitted as 1 thesis proposal in the School of Computer Science, Carnegie
Mellon, in December 1992,

Drill-Bit

Figure 1: An Example of Set-Up in the Machining Domain (from [Joseph, 1992]). In this example the
holding device is a vise, the machine a drilling machine, and the tool a dnill-bit.

Most of these considcrations are not pure constraints but only preferences when compromises are
necessary. They often represent both the experience and the know-how of engineers, so thcy may dilfcr
from one company to the other.

Let us look at a concrete example of the difference in quality of plans in this domain, in particular in
its implementaticn as one of PRODIGY’s domains [Gil, 1991]. The domain concentrates on the machining,
joining, and finishing steps of production manufacturing. The goal is to produce one or more parts according
to certain specifications. An example of a request would be for a rectangular block of 5”x2"x1” made of
aluminum and with a centered hole of diameter 1/32” running through the length of the part. In order to
perform an operation on a part, the part has to be secured to the machine table with a holding device, and in
many cases the part has to be clean and without burrs from preceding operations. The appropriate (ool has to
be selected and installed in the machine as well. As an example, Figure 1 shows a machine sct-up to drill a
hole in a part. Figure 2 sketches graphically the steps to produce a reamed hole. Before performing cach of
these steps, the appropriate tool has to be set in the machine spindle, namely a spot-drill, a high-helix-drill,
and a rcamer. Then some holding device (a vise in the example) has to be put on the machine, and the part
has to be held by the holding device.

3 U
ns
ke

has-spot has-hole is~reamed

Figurc 2: The Steps to Make a Rcamed Hu le: first a spot hole is drilled on the part, then the hole itsell is
made, and finally the hole is reamed. For cach of these the operations the appropriate tool (respectively a
spot drill, some appropriate drill bit, or a reamer) has to be installed in the drilling machine.

Supposec the planner has to build a plan to have a part with two reamed holes on one of its sides. If
the planner works on making cach hole separately, it will obtain a solution, sketched in Figure 3(a) (the
operators to hold the part are omitted). This solution is not the shortest one (and in this domain a shorter
solution may mean a faster and cheaper way to producc a large number of parts). Some steps may be
eliminated by 1 ordering the operations. Both holes, and spot holes for that matter, have to be in the same
side and may be made with the same tools. Therefore once we have sct the appropriate tool in the drill

spindle and held the part on the machine iable, the operations corresponding to both holes can be performed
consccutively. Figure 3(b) shows a beticr solution to the problem. In this cxample the pianncr obtains the
better solution by interleaving the problem goals. In PRODIGY this deeision may be encoded in the form of

a search control rule.

put tool to drill a spot hole
elean the part

drill spot hole for holel
change tool to make hole

put tool to drill a spot hole
clean the pan

dnll spot holc for holcl
dnll spot hole for hole2

3

Hofel drill holel change tool to make hole
. holel
change tool to ream drill holet and
elean the parn drill hole2
hole2

ream holel

change tool to dnll a spot hole
drill spot hole for hole2
change tool to make hole

change tool to ream
clean the part

ream holel

clean the parn

ream hole2

hole2 < drill hole2

change tool to ream
elean the part

ream hole2

(a) (b)

Figure 3: Two Plans of Different Quality to Make Two Reamed Holes on a Part. Some steps in solution
(a) may be eliminated by reordering the operations, since once the corresponding tool is sct, the operation
may be performed for both holes consecutively. Solution (b) captures such improvement by interlcaving
the operations on holcl and hole2.

2 A Taxu:sromy of Quality Metrics

In this scetion we proposc a taxonomy of quality metrics lor planming systems. These metrics can be
classified in three large groups. The planner solutions can be compared in terms of their cxecution cost,
their robustness or reliability under uncxpected circumstances, and the satisfaction of the client with the
solution itself (for cxample the aceuracy of the result, or the comfort it provides to the uscr). Figure 4
presents this taxonomy, and the next subscctions explore it in detail. The problem ol finding good quality
plans is different from that of reducing the effort required to generate plans. If only limited resources (time
or space) are available for planning, the planner may have to give up trying to lind a good solution and
resign to any solution within the given resource bound. Section 2.6 discusses metrics of problem solving
efficicney and some previous work on improving it in PRODIGY.

2.1 Minimizing Execution Cost

The quality of a plan is strongly rclated to the cost of executing it. Some of the lactors that affcct a plan’s
exeeution eost ean be computed by summing over all the steps or operators in the :'an, thatis (s, = e,
where (15447 is the total cost of exeeuting the plan and ¢, is the cost for each operator. ¢; can be the operator

‘souow Aoudionye Suruued
19pISUOD 10U S0P AWOUOXRI SIYI Teyl JION "POUIRIGO UONN[OS dUI YIIM U Y1 JO UONORJSTIES JO d2150p
Ayl SULIAPISUOD 3SOY1 pue “poureIqo ueld Y1 JO SSIUISNQOI O Patefar 3soy) ‘1500 uonnoaxa uipiedar asoy
A[weu ‘sau0821ed Peoiq 3214 Ut paYISse[d 3q ued SOURW 3SaY |, SIUIIN Afeng) jo Awouoxe], v ¢ angig

Tl if®ima azca ifan 1EeT
feauerd *gjuabo Arg E-a) W T B a)

Hamitoeng rang-E-a)

"callysPw ES3SI 0ERs EATITIOE AT
M1 paTRpayoe I G AR F TEE ESm e Ty
it uw
FaAT IRuTEITE 7 ARITOTTINA e e
aTgeLa P '

;8 Tagumu

: sunl

Kianonal az

EADITIORA]
RS

io A3t (meansd

AT o IWOE U] ITanKD
*[’-’f =
Ai1renk
IO InT o
¥y

exccution time, the cost of the resources used by the step, or 1 if the measure is simply the length of the
plan or total number of actions. This scction analyzes factors that influence a plan’s exccution cost.

Execution time: a straightforward mecasure of ¢xecution time is the number of operations, or length,
of the plan. However different actions frequently take different times to exccute and therefore considenng
the execution tinie for each operator is more significant than just the length of the plan The plan wopology
affects execution time if several actions may be executed in parallel.

Material resources: a resource is something needed to perform a plan step. In a factory scheduling
duinain, or the process planming domiain described abuve, resourees melude persennet, material, tools ard
machines. Each action includes which resources it requires and the characteristics that the resource niust

have.

Resources can be classified in several catcgories:

Time.
Energy.

Consumable resources are those for which an initial stockpile is available which can only be depleted
by actions in the plan [Currie and Tate, 19911, for example matcrials. Particular instances of these
resources cannot be rcused by several actions. Consumable resources can be further classified as
renewable and non-renewable. The agent has some way of obtaining more renewable resources if it
runs out of them (for example, it can acquire more metal stock). However once it runs out of some
non-renewable resource but still needs it, the agent cannot make progress in the plan execution.

Non-consumable resources are those that are rendered busy for a period of time, and then released
and made available to other actions. This includes the use of machines and tools. The consumption
of resources is related but different from an object wearing out. For example, machines wear out, but
are usually considered as non-consumable resources. The wearing is related to the cost of an operator
making use of the resource, but not dircctly so.

The usc of resources is closely related to the cost of exccuting a plan. Good plans try to make the
best use of the resources available. There are many considerations zbout resources and resource use that
influence the quality of a plan:

Maximize the fraction of time in which a resource is actually used, and intcr-operation transfer times.
The planner should try to reduce the amount of time a resource remains idle but locked by some
action. An example of this is reducing the time an airplane remains sitting in the airport waiting
for its load to arrive. This idle time may force the pli.ner to use a different resource for another
actions in the meantime, or else to create a plan with a longer execution time. As another cxample,
in the Hubble space telescope (HST) domain, a good schedule will try to maximize the fraction of
time spent actually recording data on any instrument of the telescope, as opposed to (for example)
realigning the telescope or switching instruments {Muscettola and Smith, 19901. Scheduling systems
typically address these considerations in order to generate good schedules [Fox and Smith, 1984/ o

Minimize the number of resource requests that will be necessary during plan execution: human
cxperts try to reduce resource reservations, as a resource request may create waiting times until the
resource becomes available, if it is being used by a different agent. Once onc obtains a resource, it

*We make a distinction between the process planning problem and the scheduling problem. The former can be defined as
selecting a sequence of operations whose execution results in the achievement of a goal, for example the completion of an order in
a job shop. The latter focuses on the assignment of start and end times and resources o each of those operations.

is better to use it as much as possible before relcasing it. In the process planning domain ¢xample
presented in Sectionl.1, the better solution takes advantage of the samce sct-up to perform several
operations, instead of setting up the machine, tool and part once for cach operation to perform. This
not only reduces the length of the plan but also the number of resource requests.

¢ Resource sharing may reduce the length and cost a plan, for example when the same truck is used
to move two different packages 10 the same destingtion. Sonietimes however it 13 better nut o usc a
resource that is being used by other operators. This is a way to avoid resource conflicts with the plans
fur uther agents. arad therelore the mesuliing plins are more aurenable (0 parallelization, ‘We made wse
of this criterium in previous work on multiagent planning !Pérez, 1991]: resource preferences were
encoded in control rules, mostly domain independent, and then plan topology and resource conflicts
were analyzed in order to build parailel plans.

The choice of resources not only conditions the plan execution cost, but also its robustness. Many factors
related to the availability of altemative resources, such as machine downtime, machine substitutability, or
altemnative production processes, can affect the reliability of a plan and the availability of altemative actions
when using the chosen resource fails.

Agent skill requirements: they refer to the extent to which an agent can perform an action. Some
examples are strength, speed, intellect, and how good it is at a particular skill. Plans with less agent skill
requirements are typically less expensive.

Plan complexity: plan complexity affects both the execution cost and the robustness of a plan, and
there usually exists a trade-off between these two measures of plan quality. The complexity of a plan can
be seen at two levels;

e operator complexity: the choice of a particular operator is influenced by how likely it is to fail or
have unpredictable results, and also by it. execution cost, both in time and resources.

o complexity of the plan structure: plan length is a straightforward measure of the quality of 4 plan.
However in some cases it is interesting to consider the plan topology as well. The dependencics
among operators and their concurrency on the use of resources influence execution time, as several
actions may be performed in parallel if they are independent [Pérez, 1991]. They also influence the
plan robustness when several actions contend for the same resource.

2.2 Maximizing Plan Robustness

By robustness of a plan we mean its ability to respond well under changing or uncertain conditions. A
plan’s execution may fail because of unexpected environmental changes or events, of actions not having
their intended effects (the resources are not reliable, or the operators outcome is uncertain 3), or even of
inadequacies of the planner itself. When a failure occurs, execution of a plan may go awry and produce
outcomes considerably different from the desired goal. Therefore the quality of a plan depends on its
reliability ard its potential for recovery after a failure. Recent work with focus on execution-failure
recovery uscs different methods for adapting a plan upon failure so execution can continue [Howe and
Cohen, 1991]. Another approach is to improve the planner’s knowledge to guide its scarch towards more
robust plans. Note that there is usually a trade-off between cost and robustness [Feldman and Sproull,
1977).
Three aspects determine a plan’s robustness:

*However PRODIGY in particular assumes that there is not uncertainty on the operators or the world model. For a thorough
investigation of inadequate operators and leaming to improve their fidelity to external actions, see iGil, 1992].

6

e probability of failure
e extent of the failure

e possibility of failure recovery

To reduce the probability of an exccution failurc the planner may reusc plans that proved successful
in past similar situations and were stored then. Plans that are complex, both at the operator level and at
the plan topology, are more prone to ¢ - tion failures, as discussed above. Some operators may be more
likely to fail or act unpredictably tha: s. Complex plans with many dependencics among operators
and resource sharing may suffer of resc.. .. contention and therefore fail at execution ime.

Another factor for plan robustness is whether the consequences of a failure during execution are
localized. If all the plan actions are interacting and one of them fails, the plan may fail without making
any progress towards the goal. However if two parts of a plan are non-interacting, a failurc in one part
will not affect the other. (We 1efer to these types of failures as containable failures.) In particular lincarly
decomposable plans are preferred, i.e. those that can be decomposed in independent subplans that achicve
different subgoals. Therefore the localization of the parts of the plan that can cause exccution failures
increases the possibility of partial success of the plan. By analyzing thosc parts the planner can incorporate
redundant steps that increase the probability of success of the whole plan.

Failures are often unpredictable and in spite of reducing their chances of occurring, they may eventually
happen. Plan robustness includes the possibility of recovery after a failure. This possibility increases if the
usc of non-renewable resources in the plan is minimal. If the agent runs out of a resource of this type, no
recovery that requircs that same resource is possible. Recovery is facilitated when other alternatives to the
faulty parts of the plan are available. Thesc alternatives may be built in the plan by planning in advance
for contingencies. The alternatives may also be stored in a library of recovery methods {Howe and Cohen,
1991]. They can also be left uncxplored. In this casc they can be used upon failure at running time for
replanning and recovery.

2.3 Client Satisfaction

There arc some other factors of plan quality that can hardly be considered in the previous categorics and in
some cases they are hard to quantify. For cxample, the human user may prefer a plan that takes him {rom
one city to another in first class instcad of second class. The process planning domain cxcmplifics how
the degree of accuracy required in a part may influence the choice of machine or tool to perform a given
operation, if the result has to satisfy a finc-grain tolerance.

In scheduling systems that try to find the optimal schedule, the valuc of the resulting statc is an applicable
criterium to measure plan quality. The quality of a solution can be measured by the number of the goals
achicved by the solution or the value of such goals. For example in the case of scheduling the operations of
the Hubble Space Telescope, the quality of the solution obtained depends on the number of proposals that
the HST can accommodate [Muscettola and Smith, 1990} and how the proposals accommodated relate 10
the program and observation prioritics, which are given as part of the problem to solve. :

24 Trade-Offs Among Quality Metrics

When deciding which plan is better onc can casily run into trade-offs. This can be illustrated with an
example from the process planning domain. In this domain several machines can be uscd to reduce the

“Note however that at present PRODIGY s solution to a problem achieves all the goals in the probiem, or ¢lsc renders the problem
unsolvable. Thercfore in that sensc all the plans have the same value, with respeet to the degree of goal satisfaction.

7

size of a part. The choice of a particular type of machine may depend on the degree of accuracy desired,
the economy of the plan, or the time required for cxecution. The last two factors in turn might only be
relevant depending on the number of parts on which the same operation has to be performed (i.c. how many
times the same plan will be executed). Grinding a part gives better iinishes and holds closer tolerances than
other machines, but it may be more expensive. The shaping and planing operations, in order to reduce a
part’s size, are slower than milling the part, but the tools they use are less expensive and casier to sharpen.
Therefore it may be necessary to consider trade-offs among the diffcrent options. Factors such as the skills
available and required to operate the machine, personal likes and dislikes, and availability may also need to
be considered. Most of thesc factors are not as basic as others but in some cases may be decisive.

Scheduling systems have to tace a similar problem when the constraints cncoding diffcrent quality
factors conflict ([Fox and Smith, 1984]. For example, removing a machine’s second shift may decrcase
costs but may also cause an order to miss its due date. Therefore in these systems one cannot rely only
on constraint propagation techniques to arrive to acceptable solutions. Rather, thcy choose to relax some
constraints and find a solution that best satisfies the remaining constraints.

2.5 Domain-Dependent Versus Domain-Independent Metrics

In some cases the ways to mcasure the quality of a plan are clearly domain dependent. The goal of the
scheduler presented in [Perry, 19901 is to schedule launches and terminal illuminators to maximize the
depth of fire, or number of shots at incoming threats. Other critcria, such as “minimize the consumption of
rcsources,” seem obvious and applicable to every domain. However we can find cases where this is not the
best thing to do. The distinction between domain-dependent and domain-independent aspects is not always
clear. We take this example from [Wilkins, 1988]: consider the advice “usc cxisting objects.” This is a
fairly domain-independent concept that is used by NOAH, and mentioned by Wilensky as a mecta-goal for
plarming. However this idea still involves domain-dependent knowledge. In a house-building domaain, itis
desirable to use the same piece of lumber to support the roof and the sheetrock on the walls. But in other
domains this may not be o gond strategy On the space shuttle. one may seant diflerent functions perlomed
by different objects so the plan will be more robust and less vulnerable to the failure of any onc object. So
the “use of existing objects” idea makes assumptions about the domain that need to be stated (perhaps one
wants to apply this idea only to certain portions of the domain).

2.6 Measures of Planning Cost

The quality of a planning algorithm depends both on the quality of the solutions generatcd and on the cffort
sperit searching forthen:. Honly limited compulational resources are available 1o the planrer during problen:
solving, the planner may have to trade off solution quality in order to find a solutionat all. The planning cost
depcnds on both the time and the space spent during problem solving. Two measures of planning cost have
been used in the litcrature on learning and planning (for example [Minton, 1988, Pérez and Etzioni, 1992]),
namely search time and number of nodes in the scarch trec. Figure 5 summarizes planning cost criteria.
Planning time can be measured as time spent in pure planning, or amortized when planming and lcaming
are interleaved. Planning space is usually measured as working space (for cxample, number of nodes
eepanded in searchy When planming snd lesmning are inleeleoved and the planner stores kiiowlede that
will be useful later, a long-term usc of space has to be considered. The stored knowledge can take the form
of search control rules extracted from problem solving traces, or of cases in a case library | Veloso, 1992,
Kambhampati, 1990, Hammond, 1986]. Recycling past successiul experience reduces the scarch cifon
when solving new similar problems. Note that there is usually a trade-ofi among the amount of knowledge
stored, the eust Of seceysing and reusing i, and the savings on search gabied Fromr it [Mitkon, 19881,

min

planning
cost
mIﬁ——_______—_——_————————‘:5;:_—__—_——___———__—_-“—max
planning space recycling
time requirements of past suc-
Te— cessful plans
min min min min (e.g. deriv.anal.)
one-time amortized working space long-term space
(pure) time (planning (e.g. nodes in (e.g.case library
planning and learning) search tree) size)

Figure 5: A Taxonomy of Metrics of Planning Cost. Most of the machine Icaming mechanisms designed to
date to acquire control knowledge for planning systems are aimed at improving the efficiency of planning.
These techniques are known as speed-up learning.

2.6.1 Solution Quality Versus Problem Solving Efficiency

As we have already mentioned, the problem of finding good quality plans is different from that of reducing
the effort required Lo generate plans. In many domains finding a plan at all requires a considerable amount
of search and there has been work on improving the efficiency of a problem solver with machine leaming
techniques [Mitchell et al., 1983, Laird er al., 1986, Graich and DeJong, 1992, Korf, 1985, Veloso, 1992,
Minton, 1988, Knoblock, 1991b, Etzioni, 1990} "We call this speed-up leaming. However these mechanisms
have paid none or little attention to the quality of the solutions obtained. Here we briefly present some
examples of speed-up learniing systems in the context of PRODIGY.

PRODIGY's explanation-based leaming system (EBL) [Minton, 1988] constructs explanations from a
'roblem solving trace and an axiomatized theory describing both the domain and relevant aspects of the
problem solver’s architecture. Then the resulting descriptions are expressed in control rule form, and control
rules whose utility in scarch reduction outweighs their application overhead are retained. The system can
learn from success, failure and goal interaction. These concepts are represented declaratively as target
concepts. The analysis of goal interactions may lead to better plans (sce Section 3) but that is not a goal
of the EEL module. For the EBL module to lcam control knowledge that improves the quality of the
plans, it would bc necessary to augment the domain theory and target concepts to be able to ¢xplain, or
prove, why the solution obtained in the current problem solving episode is a good one. Somcthing similar
may be said of systems that perform static analysis on the problem space representation [Etzioni, 1990,
Pércz and Etzioni, 1992},

The derivational analogy module of PRODIGY [Veloso, 19921 stores past problem-solving expenences as
cases, and reuses them to solve similar problems, obtaining a considerable improvement in problem solving
efficiency. The use of one or more past cascs to solve the current problem may lead to shorter plans, as
reported in [Veloso, 1992]. This was a surprising result but not the focus of the work. Note in fact that if
the solution stored to solve a prei'em was not a good one, it may be reused to solve subsequent problems
without trying to find a better solution.

PRODIGY s abstraction planning module [Knoblock, 1991al divides the axiomatized domain knowledge
into multiplc abstraction levels. Then during problem solving, a solution is found first in the top-level space
to guide the search for solutions in more detailed problem spaces. The use of abstraction hierarchies reduces
the problem solving space but docs not guarantee that the solution obtained is the best onc (see [Carbonell
et al., 1992 for an example). However it may lead to produce shorter solutions since the abstractions focus
the problem solver on the parts of the problem that should be solved first. [Knoblock, 1991b] presents

experiments in which the usc of abstractions produces solutions that arc about 10% shorter than those
produced by PRODIGY in certain domains. Notc that the mcasure of plan quality used in 1his case is the
length of the plan, and it scems that these results do not extend to other quality metrics.

In the work reported here we will focus on the part of the taxonomy related to exécution cost. See
Section 6 for a description of the proposed work plan.

3 Solution Quality and Goal Interactions >

Planning goals rarely occur in isclation. A planner must be capable of taking into account the interactions
between conjunctive goals in order to produce a plan to solve the problem. There have been many rescarch
efforts addressing the issue of planning for conjunctive goals, focusing on a variety of aspects, including
asalyzing t+e complexity of this planning problem [Sussman, 1975, Chapman, 19871, designing appropriate
planning algorithms [Sacerdoti, 1977, Tate, 1977, Drummond and Curric, 19871, categorizing differcnt types
of goal interactions [Wilensky, 1983], and lcam: - control knowledge to effiicntly handle the search for the
interactions [Minton, 1988, Etzioni, 1990]. Cc ork. thoush kil ypon ¢his previous work, goes beyond
it as we aim at identifying goal intcractions directly relaied to the quality of the plans produced.

From a practical impleinentation point of vicw we distinguishtwo categorics of goal interactions, explicit
goal interactions and quality goal interactions.

3.1 Explicit goal interactions

We include in this category the goal interactions that are cxplicitly represented as part of the domain
knowledge in terms of preconditions and effects of the operators. A plain exhibits a goal intcraction of this
type when there is a goal in the plan that has been negated by a previous step in the plan [Minton, 1988,
Etzioni, 1990]. These goal interactions enforce particular goal orderings in order that the planncr may be
ablc to produce a solution to the problem. In a typical example of a two-goal interaction, after onc of the
goals has been achieved, it is delcted by an operator that works towards achicving the othicr goal. 6

Goal interactions in this catcgory include the well-known Sussman’s anomaly in the blocksworld [Suss-
man, 1975]. Consider also another illustrative cxample in a transportation domain. In this domain, packages
are 1o be moved among different cities. Packages are carried within the same city in trucks and across citics
in airplanes. Trucks and airplancs may have limited capacity. At cach city there are several iocations, ¢.g.
post offices (po) and airports (ap). A package P1 is at the Pittsburgh airport. There is only one airplane,
A1, available also at the Pittsburgh airport. The goal consists of having both the airplanc and the package
at the Boston airport, and is represcuted by the conjunction (and (at-airplane Al bos=-airport)
(at-object P1 bos-airport). If the goal (at-airplane A1 bos-airport) is addressed first, and
Al flies from Pittsburgh to Boston, there is no way to achieve the secend goal without first flying back Al 1o
Pittsburgh. The resulting plan involves flying Al back and forth unnecessarily. It is conceivable to design
an algorithm that fixes this kind of plans by removing unnccessary wperations that reachicve the clobbered
goals [Rich and Knight, 1991].

In some problems, thcse intcractions are unavoidablc and the planning system must find a solution that
minimizes their effects. When this happens, search time is typically reduced and better solutions tend to be

5This section appears, extended, in {Pérez and Veloso, 19931

®Other goal interactions in this category may be beneficial to the planning process, when solving one goal makes a second goal
easier 1o achieve. This is generally termed goal concord and opportunistic planning takes advantage of these situations [Converse
and Hammond, 1992).

10

found. These solutions are generally shorter in length, and more direct [Minton, 1988, Ryu and lrani, 1992,
Veloso, 1992].

{n least-commitment planners the critics take care of these goal interactions by establishing ordering
constraints #mong the conflicting goals. In the case of PRODIGY, a casual-commitment plarner, goal
preterence contrc’ knowledge is automatically acquired to deal effectively (in the scnse ol problem solving
effort) with this kird of goal interactions by different machine leaming approaches, namely explanation-
based learning [Minton, 1988], static analysis [Etzioni, 19901, or derivational analogy [Veloso, 19921,

A particular problem may have many different solutions. These solutions may differ in the set of
operators in the plan. If the ordering constraints between achieving two goals are explicit in the domain
representation, then all the solutions to a particular problem will have the two goals interacting. On the
other hand *he dependencies may be the result of a particular problem solving path explored. In this case
for some solutions the goals may inter._t and for some others thcy may not.

3.2 Quality goal interactions

To illustrate this difference and to motivate the quality goal interactions, we further discuss different plans
with ordering consiraints that arc or arc not explicit in the domain. In the one-way rocket domain [Veloso,
19891, the goals of moving two objects to a different location interact, because the rocket canonly move once.
This is an interaction that is represented in the domain definition as the moving operator cxplicitly deletes
the location of the rocket. The machine-shop scheduling domain [Minton et al., 1989] also constraints that
holes n parts must be drilied before parts are polished, as the drilling operawor deletes the shining cifcet. In
this domain, the goals of polishing and making a holc in a part interact again duc to the domain definition.

However, in this same machine-shop scheduling domain, when two identical machines are available to
achieve two identical goals, these goals may interact, if the problem solver chooses to usc just one machine
w achicve both goals, a8 it will Bavee W wait forthe roachine w be idle 1 the problem solver uses the two
machines instead of just one, thea the goais do not interact in this particular solution.

There is a varicty of equivalent cxamples in the logistics transportation domain. In general it is not
clear whiat use of Tesources is overall the best. For example, in the togistics transportation domain, suppose
that the problem solver assumes that the same truck (or airplane) must be used when moving objects [rom
the sare location into the sume (or close) desting In tis case the gouls OF moving the objects interact
But if different carri=rs are chosen, there is not such interaction. Note that the problem can become quite
complicated as the domain considers other types of constraints, such as capacity for the carriers, size of the
objects to be transported, distances between locations that dictate the type of carmier 1o use, and so on.

In the example presented in Scction 1.1 the planner obtains the better solution by interleaving the
problem guals. i PRUDIG ¢ this decision may be encoded in the form ol scarch conurol rules. Note that if
the goal interactions are not considered the planner still constructs a valid solution. It is only because of
yuality considerations that the interactions occur as the same set-up is used for achieving the goals for both
holes. These interactions are not cxplicitly represented in the domain specification.

These interactions arc related to plan quality as the use of resources dictates the interaction between
the goals. The control knowledge that guides te plamer o sulve these teractions is brarder 1o leam
automatically, as the domain theory does not encode these quality criteria. Our work is a current rescarch
cffort on leaming control knowledge to improve the quality ol the plans generated by the problem solver.

Some of the interactions between goals are duc to the use of a state-space planner, as the operator
ordering in the final plan is tied to the goal ordering during problem solving. By using a plan-space planner,
in which actions can be inserted anywhere in the plan, some of these problems may go away. However
there is still the issue of which is the appropriate control knowledge, heuristics or critics, 1o sclect the best
place to inscrt actions o the plan. There are a few other planmers that atralyze the relstionship between

11

goal interactions and plan quality. Section 7.1 discusses some of this related work.

4 Background: The PRODIGY Problem Solver

PRODIGY is a domain-independent problem solver. Given an initial state and a goal expression, PRODIGY
searches for a sequence of operators that will transform the initial state into a statc that matches the goal
expression. PRODIGY’s sole problem-solving method is a form of means-ends analysis. Table 1 describes
the basic search cycle of PRODIGY's nonlincar planner [Veloso, 1989]. A complete description of PRODIG
appears in [Carbonell et al., 1992].

1. Check if the goal statement is true in the current state, or there is a reason to suspend the current search path.

If yes, then either return the final plan or backtrack.

2. Compute the set of pending goals G, and the set of possible applicable operators A.
3. Choose a goal (¢ from G or select an operator 4 from A that is directly applicable.
4. If (& has been chosen, then

o get the set O of relevant operators for the goal,
choose an operator O from O,

get the set B of possible bindings for O,
choose a set B of bindings from B,

gotostep 1.

e o o o

5. If an operator A has been selected as directly applicable, then

e apply A,
e gotostep L.

Table 1: A Skeleton cf PRODIGY's Nonlinear Scarch Algorithm (Adapted from [Veloso, 1989]). Problem
solving decisions, namely selecting which goal/subgoal to address next, which operator to apply, what
bindings to select for the operator, or where to backtrack in case of failure, can be guided by control
knowledge. PRODIGY s trace provides all the information about the decisions made during problem solving
so it can be exploited by machine lcaming methods.

PRODIGY provides a rich action representation language coupled with an expressive control language.
Preconditions in the operators can contain conjunctions, disjunctions, negations, and both existential and
universal quantifiers with tvped variables. Effects in the operators can contain conditional effects, which
depend on the state in which the operator is applied. The control language allows the problem solver to
represent and leam control information about the various problem solving decisions, such as selccting which
goal/subgoal to address next, which operator to apply, what bindings to select for the operator or where to
backtrack in case of failure. In PRODIGY, there is a clear division betwcen the declarative domain knowledge
(operators .. 4 inference rules) and the more procedural control knowledge. This simplifies both the initial
specification of a domain and the incremental leaming of the control knowledge.

PRODIGY is designed with a “glass-box” approach: all the steps taken, all the decisions made, and all
the information consulted by the engine are available in a problem’s trace. This provides an information
context in which lcaming can take place. Previous work on PRODIGY used explanation-based lecaming
techniques, static analysis of the domain definition [Minton, 1988, Etzioni, 1990, Pérez and Ewzioni, 1992],
and derivational analogy [Veloso, 1992] to acquire search control knowledge to increase problem-solving
efficiency. The machine leaming and knowledge acquisition work supports PRODIGY’s casual-commitment

12

method 7, as it assumes there is intelligent control knowledge, exterior to its scarch cycle, that it can rely
upon to make decisions.

4.1 Example Domains

The examples presented throughout this document are extracted from two domains: atransportation logistics
domain, and a machining process planning domain. Thesc are the most complex and real-world domains to
which PRODIGY has been applicd up to date. In this section we describe them briefly.

4.1.1 The Transportation Logistics Domain

This is a complex logistics planning domwin in which packages are to be moved among different citics.
Packages are carried within the same city in trucks and across cities on airplancs. Each truck operates in a
single city. At cach city there are scveral locations, ¢.g. post offices and airports. There are six operators in
the domain namely loading and unloading trucks and airplanes, driving trucks between locations, and flying
airplancs between airports. In the current version trucks and airplanes have unlimited capacity. The domain
could be cxtended in different ways, for example to consider the capacity of the carmiers and package sizes,
the fuel consumption, and/or the distance between cities.

In this domain interleaving of goals and subgoals at different levels of the search is needed to find a
good solution: censider for example the problem of moving two given packages from the Pittsburgh airport
to the Boston airport. Accomplishing cither goal individually, as a lincar planner would do, would require
using a different airplanc (or a different trip of the same airplanc) {or cach of the packages, which is clearly
an incfficient way to solve the problem. PRODIGY’s nonlincar algorithm may delay flying the airplanc until
both packages are loaded by means of control rules.

4.1.2 The Machining Process Planning Domain

Section 1.1 described this domain and introduced an example taken from it. This domain is to date the
largest one implemented in PRODIGY. It has 75 operators and 35 .aference rules. [Gil, 1991 describes it
in detail. Some of the problems used to test the domain were taken from real engincers specifications as
presented in [Hayes, 1990} and the number of operators (not including inference rules) in their solution
ranges betwcen 35 and 70.

4.2 PRODIGY Decisions that Affect Plan Quality

The previous section presented the types of decision points in PRODIGY s scarch cycle. These decisions may
influence the quality of the final plan and encode available expert knowledge. Some c¢xamples follow:

¢ Goal ordering: in the example in Section 1.1 choosing the right goal ordering reduced plan length. In
general, asymmetric goal interactions yicld a preferred opumal goal ordering to minimize clobbering
of previously achieved goals. Here we present another example of how goal ordering decisions
influence plan quality. Supposc the problem posed to PRODIGY is to have a part with two holes,
one opening into another. This can be encoded as the conjunction of two goals, onc for cach hole.

"In a casual-commitment stralegy at cach decision poinl the planncr commits 1o a particular alternalive, and backtracks upon
failure. This is in contrast to a least-commitment strategy where decisions are deferred uniil ali possible inleractions are recognized.

*Throughout this document several examples are presented. In them we follow PRODIGY'’s slandard nolation: inslanliated
operators are enclosed in <> and literals, both stale lilerals or goals, are enclosed in ().

13

PRODIGY has 10 start deciding on which hole to work first, i.c. which of the two goals try to achicve ’
tirst. The following advice may be used to guide PRODIGY s decision:

If a hole H; opens into another hole 5, then one is recommended machining H; before
H\y in order to avoid the risk of damaging the drill. [Descotte and Latombe, 1985]

This advice can be translated into a search control rule. The antecedent preconditions match when »
one of the holes actually opens into another. The consequent reccommends with which hole to start
planning. It is interesting to realize that the expert advice may appiy only in some circumstances. If
machining the holes in the opposite order is faster, the right decision could have been ditferent, and
the rule should only fire when the risk of damaging the dnll is more important than the time spent on
the operations. Therefore different control rules, or control rule sets, may encode different strategies.)

In some cases choosing the appropnate goal ordening is required to deal with goal interactions,
both positive and negative. Section 2 presented some cxamples in which choosing the right goal
interleaving produces better plans.

e Operator preferences: suppose PRODIGY's goal is to reduce the size of a part. Some of the candidate
operators to achieve this goal are SHAPE, SHAPE-WITH-PLANER, and MILL. The following cxpert ’
advice may be useful to decide which operator 10 try first, and can be translated into one or more
control rules whose ccnsequents propose the appropnate operator.

In most shaping and planning operations, cutting is done in one direction only. The retum

stroke represents lost time. Thus these processes are slower than milling and broaching, » o
which cut continuously. On the other hand, shaping and planning use single-point tools

that are less expensive, are easier to sharpen, and are conducive to quicker set-ups than

the multiple-point tools of milling and broaching. This makes shaping or planning often

economical to machinc one or a few picces of a kind. ([Doyle, 19691, p. 597).

¢ Binding preferences: suppose PRODIGY is asked now to solve a problem in the logistics domain. The [
geal is to move Package3 from the airport to the post office, and to do this two trucks, Truckl and
Truck2, are available at the airport. Truckl has a bigger capacity, and therefore is more cxpensive
to use, than Truck2. However Truck2’s driver is known to be less reliable that Truckl’s driver. To
achieve the goal, PRODIGY picks operator UNLOAD-TRUCK. Then the next decision, a bindings
choice, is which truck to use. If the strategy is to keep the cost low, Truck2 should be preferred, but if)
reliability of the plan is the major factor Truck 1 should be used in spite of its greater cost. Note that
the choice of bindings may influence the operators that follow. Scction 5.2.1 presents this cxample in
detail.

5 Work to Date)

In order to establish the feasibility of the research proposed in this document, initial investigations were
conducted on acquiring control rules to cnhance plan quality. In this section wc descnibe the prototype
implemented to date. The viability of the approach and the usc of the prototype are illustrated with two
cxamples from the logistics transportation domain.)

5.1 Semi-Automated (Interactive) Acquisition of Quality-Enhancement Control Rules

As mentioned in Section 2.6.1, all the methods to acquire control knowledge for PRODIGY focus on improving
the planner’s efficiency by reducing the search space. The work proposed here intends to acquire control

14

knowledge that guides scarch in order to improve the quality of the solutions obtained by the planner. The
metrics of solution quality on which we focus are the plan length and the cost o { exccuting the plan. So far
we have concentrated on the acquisition of search control rules. These rules provide guidance during scarch
to make local decisions. However it is not cicar yet whether these local decisions will be enough to lead
the problem solver towards better solutions, or PRODIGY s control structure will have to be extended. The
control rules encode the knowledge extracted from a domain expert: knowledge about why a solution is
better than other, and about how to modify a solution to improve its quality. We do net claim ihat these rules,
or more generally, control knowledge, will necessarily guide the planner to find optimal solutions [Simon,
1981}, but that the quality of the plans will incrementally improve with experience, as the planner sccs new
interesting problems in the domain and interacts with the domain cxpert.

Table 2 shows the process we have implemented to date in order to acquire control knowledge from an
expert. The next subscctions describe its steps in more detail.

1. Run PRODIGY with the current set of control rules and obtain a solution 5, or alternatively set .5, empty.

2. 1£5,,

Show S to the expert.
Expert provides new solution >. by modifying 5p: adding, removing, or interchanging plan operators, or
modifying their bindings.

Otherwise (no ~#*1al solution S, is available)
Expert provides completely new solution, S..
3. Test S.. If it solves the problem, continue. Else go back to step 2.
4. Compute the partial order P for S..

5. Determine the set of deeision points P in the problem solving trace where control knowledge is required o
obtain a solution 5, that satisfies P

6. Run PRODIGY stopping at cach of the points in D P and acquire control knowledge from the expert o make the
right choice.

7. If expert still wants to improve the current solution 57,

Set S, — 5.
Go tostep 2.

Otherwise terminate.

Table 2: The Basic Process for Incremental Control Knowledge Acquisition. The expert provides a solution
he considers good either by modifying the one proposed by the planner, or by cnumerating all the operators.
Then the system acquires control knowledge that will guide the planner towards the better solution.

5.1.1 Getting a Solution from the Expert

In step 2 the expert provides PRODIGY with a solution 5. that he considers better than the one PRODIGY obtains
with the control knowledge currently available (we call the latter %,). The purpose is to acquire control
knowledge so that should PRODIGY see the same problem again, the better solution would be obtained. The
expert may usc ., as a basis to build 5.. However in som¢ :ases having the planner find just one solution
(5,) is very expensive if control knowledge is not sufficient, and therefore we provide the capability that
the expert can build a solution (.5) from scratch to start with.

15

In the domains we have cxperiinented with, solutions tend to be long and the operators include a lot of
parameters. It seems uscful to provide the expert with good tools to input a solution. The current interface
allows him to build a solution by putting together some or all of 5,,'s operators and adding new operators, if
needed, by typing the operator name and all its bindings. We intend to extend the interface to allow edition
of the old solution, propose default values for the parameters in the new operators, and facilitate step-wise
execution of the plan, among other things.

Note that it is possible that an expert would prefer to solve the problem using operators not yet in
the domain specification. The APPRENTICE system [Joseph, 19921 acquires such basc-level or domain
knowledge for PRODIGY.

5.1.2 Determining Where Control Knowledge Is Needed

In step 5, the system finds the decision points where PRODIGY's current control knowledge needs to be
modified so the expert’s solution is found. In fact, the planner searches for any solution that satisfics the
partial order obtained from S.. A partial order, or partially ordercd plan, cncodes a set of solutions, or
totally ordered plans. All of them have the same operators, and satisfy a set of ordering constraints. One
step op; precedes another step op, in the partial order if and only if op; adds a precondition of vp,, or op,
deletes a precondition of op;. The partial order of a plan can be obtained cfficiently [Veloso et al., 1990]
in negligible time compared to the time needed to generate the totally ordered plan. We are assuming that
the quality of the plan is the same for all the plans encoded in the tota’ order, since they all have the same
operators. For example, if two packages have to be loaded in the same truck, and we ignorc package sizes
and truck capacities, the order in which the packages arc loaded is irrclevant with respect to plan quality.
By allowing any solution in the partial order, we reduce the amount of control knowledge that needs to be
acquired. However this heuristic would not be valid in domains wherc constraints on the order of operators,
other than the ones encoded in the partial order, influence the plan quality.

DP is the set of decision points for which control knowledge needs to be incorporated. By looking to
the trace for 5, and to the expert’s plan 5., the system proposes a sct of possible candidate points where
a different decision should be made, and the preferred decisions themsclves. PRODIGY starts to solve the
problem again following the first of those recommendations. If it does not lead to 5., it is discarded and
another one tried in um. For cach reccommendation tnis process is repeated recursively: when the planner
realizes that the current path will not lead to a solution that satisfies the partial order, the path is abandoned,
candidates for wrong decision points are found, and PRODIGY backtracks to onc of those candidates and
tries a different path. ® This process can be seen as searching on the space of decision points in the trace,
until a set, D P, is fecund that leads to a solution 5.

5.1.3 Acquiring the Relevant Knowledge

If PRODIGY runs following the recommendations in D P, it will obtain plan 5. Each recommendation
contains a decision point, the altenative that leads to .57, and a reason why that altemative should be chosen
(for cxample, an operator ordering would be violated otherwise, or a different binding would be chosen
instead that the one the expert proposed). In step 6 PRODIGY restarts problem solving again stopping at cach
of those decision points, and requesting the expert’s advice. This advice is translated into search control
rules that will fire making the appropriate choices. Note that the alternative to take is known at this point and
it becomes part of the rulc’s consequent. The rule’s preconditions, or left-hand side, encode the situations
in which that decision should be made. Some of the preconditions can be automatically extracted from
the current meta-state. These are the current goal, and also the current r if we are dealing with a

%Al this process is performed through domain-independent rules speciatly designe K.

16

——

bindings decision, Also, if the reason why the system detected that a ditferent alternative should be laken
relies on other available knowledge, that knowledge is added to the rule.'® At this point we need 1o acquire
from the domain expert the knowledge that justifics the decision. We want to rely as less as possible on the
expert’s knowledge about the planner itself. In particular it is hard cven for PRODIGY cxperts to explain, for
example, why the reason for the inefficient solution is a goal ordering at a particular point of the trace. On
the other hand we necd to extract knowledge that can be operationalized, i.e. transformed into control rule
preconditions that match the current meta-state.

The approach followed here is to get the expert’s knowledge in terms of the current state, top level goals,
and possibly the pending goals. To cxtract this knowledge, the expert is asked for the reasons as possible
in terms of the proposed solution: why he/she decided to usc a particular operator or to change the order
of some operators with respect to their order in the planner’s solution. That information is captured in the
recommendation. The expert intcracts by pointing to menu items,

Once the items that will become part of the rule preconditions are choscn, they need to be generalized.
At this point generalization means simply to replace constants by variables. However it is not a trivial
process. All the objects have types in PRODIGY and thercfore new preconditions should be added that
constrain the values that variables may take. In some cases the values are so specific that the constants have
to remain. These constraints may be cxtracted from the type hierarchy, but in some cases the cxpert may
decide to specify the sct of values that the variable can take as a combination of different types (for example.
any drill bit that is not specifically used to make a spot hole can be expressed in PRODIGY's language as
(comp DRILL-BIT SPOT-DRILL)).

It is not hard to imagine that the control rules acquired from the expert in a particular problem solving
context may be too general or too specific. These rules then provide inappropriate advice when the situation
is slightly different.

5.1.4 Variations to the Algorithm

The algorithm in Table 2 may be modified to rely less in the domain expert. Table 3 reflects 1hese changes.
Instead of prompting the expert for another solution, PRODIGY can run in its multiple-solution mode until it
finds a new solution. Then the system may decide by itself if a given solution is better than other or elsc it
can ask the expert for his preference. Then the algorithm proceeds as before.

We have tested this variation in the transportation domain and run into practical problems: PRODIGY
may requirc an impractically large amount of scarch before it finds the next substantially better solution,
Before it backtracks to a point that would lead to an interestingly different solution, it trics many lesser
variations of the current one, by sclecting different alternatives near the Icaves of the search tree. We would
like to experiment with different schemas to solve this difticulty, such as imposing resource bounds (lime
or number of nodes), abandoning a path when the partial solution found so far looks worse than S, ',
or trying backtracking suategics different from chronological backtracking. These heuristics scem very
domain dependent and we have not explored them so far.

19A clear example of this deals with operator ordering (see cxample pgh1): if op; has to be applied beforc g, in the expert’s
solution, and PRODIGY has expanded op; already, o, cannot be expanded until opy has been applied, or else the required ordering
cannot be satisfied. Therefore the condition that ap; is expanded but not applied yet can be automatically added to the rule for
rejecting opy, or even to a rule for rejecting the gozl for which op; is relevant. :

"However we cannot decide in general that the final solution in that path is going to be worse than 5.

1. Run PRODIGY with the current set of control rules and obtain a solution S,. If S, is good cnough, terminate.
Find next solution S,. If no one is found, terminate.

Decide whether S, is better than S, using prior knowledge or asking of the expert.

If Sy, is not better than S, go back te Step 2.

Lol -

Determine the set of decision points D P in the problem solving trace where control knowledge is required to
obtain a solution 5,,.

6. Run PRODIGY stopping at each of the points in D f? and acquire control knowledge from the expert to make the
right choice.

7. SC[Sp & Sn.
Go to step 2.

Table 3: A Modified Version of the Basic Process. In this case PRODIGY runs in its multiple solutions
mode and finds the better solution by itself, instead of having thc human expert input it. It needs however
knowledge about why a solution is better than other.

5.2 Detailed Examples

In this section we present two examples to illustrate the viability of quality solution enhancement using
control rules, and the use of the method described in Section 5.1. Section 5.2.1 presents a simple cxample
in which rules control the use of resources in the plan according to both reliability and cost. The cxample in
Section 5.2.2 illustrates how choosing the right goal intcrlcaving leads to better plans, in particular shorter
plans.

5.2.1 A Simple Exampie: Choosing Different Resources

In this problem the goal is to move package3 from the airport (pgh-airport) to the post office (pgh-po),
and to do this there are two trucks available at the airport, pt1 and pt2. In addition there arc other facts
known about the trucks and the kind of solution preferred, that are not used by the operators. Figure 6
summarizes this problem.

INITIAL STATE: GOAL STATEMENT:
pg pg

(driver ptl reliable)

(capacity pti large)

(driver pt2 unreliable)
B3] (capacity pt2 small) 3]
PO ap (strategy resource-cost-min) po ap

Figure 6: Initial State and Goal Statcment for Problem cap. p3 has to be moved from the airport pgh-ap to
the post-office po. Using truck pt2 is cheaper because its capacity is smaller, but using truck pt1 produces
a more rcliable solution. :

The planncr automatically comes up with this solution, that uscs pt1:
<load-truck package3 ptl pgh-airport>

<drive-truck ptl pgh-airport pgh-po>
<unload-truck package3 ptl pgh-po>

18

but the expert prefers to usc truck pt2 to solve this problem, since the strategy is to reduce the resource
cost. pt2 is cheaper sincce its capacity is smaller.

A dialog is initiated once the planner solves the problem. First the new solution is built taking into
account what the expert proposes, use pt2 instcad. Then the knowledge acquisition module queries the
¢xpert in a way that requires no knowledge of PRODIGY intemnals:

Why is not the solution good enough?
1. Unnecessary steps.
2. Resources too costly.
3. Reliability problem.

Answer: 2

This is the initial solution obtained by the planner:

1. <load-truck package3 ptl pgh-airport>
2. <drive-truck ptl pgh-airport pgh-po>
3. <unload-truck package3 pti pgh-po>

Which resource do you want to replace? pti
New value: pt2
In which operators (optional):

Testing the expert solution...

The plan given is a solution to the current problem. !
Now the system has to find out why pt2 is a bettcr altemative:

These are the diffs between the two objects, ptl and pt2:
1. (capacity pt1l large)
2. (driver pt1 reliable))
3. (capacity pt2 small)
4. (driver pt2 unreliable)
Select one or more: 1 3

With this information, a new control rule is built that decides about the resource to usc:

Run problem again to acquire binding control rules.)

2 n2 (done)
4 n4 <+finish#*>
5 n5 (at-obj package3 pgh-po)
There 1s a new binding decision stored at this node.

This is the rule acquired:
(CONTROL-RULE ACQ32
(IF
(AND (TRUE-~IN-STATE (STRATEGY RESOURCE-COST-MIN))
(TRUE-IN-STATE (CAPACITY <TRUCK1> LARGE))
(TRUE-IN-STATE (CAPACITY <TRUCK2> SMALL)))
(DIFF <TRUCK1> <TRUCK2>)))
(THEN PREFER BINDINGS ((<TRUCK> . <TRUCK2>)) ((<TRUCK> <TRUCK1>))))

Testing the control rule:
The lhs would match with these bindings:

19

(((<TRUCK2> . #<P-0: PT2 truck>) (<TRUCK1> . #<P-0: PT1 truck>)))
and this is the result of firing the rule:

Prefer ((<TRUCK> . #<P-0: PT2 truck>))
over ((<TRUCK> . #<P-0: PT1 truck>)).

7 n7 <unload-truck package3 pt2 pgh-po> [1]

8 n8 (inside-truck package3 pt2)

10 n10 <load-truck package3 pt2 pgh-airport> [1]
11 n11 <LOAD-TRUCK PACKAGE3 PT2 PGH-AIRPORT> [1]
12 n12 (at-truck pt2 pgh-po)

14 ni4 <drive-truck pt2 pgh-airport pgh-po>

15 ni15 <DRIVE-TRUCK PT2 PGH-AIRPORT PGH-PO>

16 n16 <UNLOAD-TRUCK PACKAGE3 PT2 PGH-PO>
Achieved top-level goals.

Solution:
<load-truck package3 pt2 pgh-airport>
<drive-truck pt2 pgh-airport pgh-po>
<unload-truck package3 pt2 pgh-po>

Note that in this example it is enough with replacing the decision at n7. The other binding decisions are
determined by this one.

§.2.2 Finding the Right Goal Interleaving

In this problem the key to find a good solution is on interleaving the work in both top-level goals. Plan
length is the metric of plan quality considered (although in this case the shorter solution makes in addition
a more efficient use of the available resources). The example shows the usc of the algorithm we presented
in Section 5.1. The problem goal is to move a package, p1, from pgh-po to bos-po. In the initial statc
there is a truck at each post office, and two planes at pgh-airport. Figure 7 shows the initial state and
goal statement for this problem.

INITIAL STATE: GOAL STATEMENT:
b P b
[2= | o
B | - a
po_ ap po ap po_ ap PO ap

Figure 7: Initial State and Goal Statement for Problem pghi. The problem goal is to move a package,
pl, from pgh-po to bos-po. In the initial statc there is a truck at cach post office, and two planes at
pgh-airport.

PRODICY solves the problem, using some default control knowledge and obtains an inefficient solution
(I will refer to this as the planner’s solution):

1. <load-truck packagel pgh-truck pgh-po>

2. <fly-airplane airplanel pgh-airport bos-airport> Airplane flies unnecessarily.
3. <drive-truck pgh-truck pgh-po pgh-airport>

20

<fly-airplane airplanel bos-airport pgh-airport> Airplane returns.
<unload-truck packagel pgh-truck pgh-airport>

<load-airplane packagel airplanel pgh-airport> Once packagel is loaded,
<fly-airplane airplanel pgh-airport bos-airport> fly makes sense.
<unload-airplane packagel airplanel bos-airport> Package arrives to boston,
<drive-truck bos-truck bos-po bos-airport>

10 <load-truck packagel bos-truck bos-airport> and goes by truck to bos-po.
11. <drive-truck bos-truck bos-airport bos-po>

12. <unload-truck packagel bos-truck bos-po>

(D(D\lm(ﬂia

Note that airplanel flics unnecessarily. Now the system presents to the expert the solution obtained by the
planner and prompts him for a new and better solution. He may vary the order ol the steps, remove steps, or
add steps, or the solution can be completely different. In fact, the expert could provide a solution without
having the pianner solve the problem first. This is useful when the planner gets lost searching thousands of
nodes because it lacks the appropriate control knowledge. However it is often casier to critique or modify a
solution — therefore the planner usually offers one to the expert as a starting point. Once the expert gives the
solution it considers better, PRODIGY first tests it to make sure that it will actually solve the given problem.

Enter sequence of operator numbers with the new ordering of steps:
(put a * for a diff operator) 1 3567 8 9 10 11 12

The expert solution is:

#<LOAD-TRUCK [<OBJ> PACKAGE1] [<TRUCY> PGH-TRUCK] [<LOC> PGH-PO]>

#<DRIVE-TRUCK [<TRUCK> PGH-TRUCK] [<L!:C-FROM> PGH-PO] [<LOC-TO> PGH-AIRPORT]>
#<UNLOAD-TRUCK [<0BJ> PACKAGE1] (<TRUCX> PGH-TRUCK] [<LOC> PGH-AIRPORT]>
#<LOAD-AIRPLANE [<0BJ> PACKAGE1] [<AIRPLANE> AIRPLANE1] ([<LOC> PGH-AIRPORT]>
#<FLY-AIRPLANE [<AIRPLANE> AIRPLANE1] [<LOC-FROM> PGH-AIRPORT] ([<LOC-TO> BOS-AIRPORT]>
#<UNLOAD-AIRPLANE [<0BJ> PACKAGE1] [<AIRPLANE> AIRPLANE1] [<LOC> BOS-AIRPORT]>
#<DRIVE-TRUCK [<TRUCK> BOS-TRUCK] [<LOC-FROM> BOS-P0O] [<LOC-TO> BOS~AIRPORT]>

10 #<LOAD-TRUCK [<0BJ> PACKAGE1] [<TRUCK> BOS-TRUCK] [<LOC> BOS-AIRPORT]>

11. #<DRIVE-TRUCK [<TRUCK> BOS-TRUCK] (<LOC-FROM> BOS-AIRPORT] ([<LOC-TO> BOS-PO]>

12. #<UNLOAD-TRUCK [<0BJ> PACKAGE1] [<TRUCK> BOS-TRUCK] (<LOC> BOS-PO]>

woo\lmmm.-

Testing the expert solution...

The plan given is a solution to the current problem.

The system currently implemented detects the point(s) at which wrong decisions werc made. 1t may
backtrack and try differcnt altematives, until it solves the problem obtaining the solution proposed by the
cxpert. Actually it obtains a solution that satislies the partial order obtained Irom the cxpert’s solution
by enforcing dependencies between operator preconditions and previous operator cffects. For cxample, it
assumes that if two operators are not ordered in the partial order, their order does not matter. In this cuse
airplanel flics unnecessarily duc to a wrong goal interleaving after n26: achieving goal (at-airplane
airplanel bos-airport), should be postponed until the package is inside of the airplane. This was (part
of) PRODIGY's trace:

5 n5 (at-obj packagel bos-po)
7 n7 <unload-truck packagel bos-truck bos-po>
8 n8 (inside-truck packagel bos-truck)

10 ni0 <load-truck packagel bos-truck bos-po> [1] ...goal loop with node 5
10 nil <load-truck packagel bos-truck bos-airport>
11 n12 (at-obj packagel bos-airport)
13 ni4 <unload-truck packagel bos-truck bos-airport> ...goal loop with node 8
13 nié <unload-airplane packagel airplanel bos-airport> [1]
21
L o L] L] L J

14 nl7 (inside-airplane packagel airplanel)

16 nl19 <load-airplane packagel airplanel pgh-airport>

17 n20 (at-obj packagel pgh-airport)

19 n22 <unload-truck packagel pgh-truck pgh-airport>

20 n23 (inside-truck packagel pgh-truck)

22 n25 <load-truck packagel pgh-truck pgh-po> [1]

23 n26 <LOAD-TRUCK PACKAGE1 PGH-TRUCK PGH-PO> [3]

24 n27 (at-airplane airplanel bos-airport) [2]

26 n29 <fly-airplane airplanel pgh-airport bos-airport>

27 n30 <FLY-AIRPLANE AIRPLANE1 PGH-AIRPORT BOS-AIRPORT> [2]

The system points the crucial decision in the current example, namely:

-- Wrong decision made after node
#<APPLIED-OP-NODE 26 #<LOAD-TRUCK [<OBJ> PACKAGE1] [<TRUCK> PGH-TRUCK] [<LOC> PGH-PO]>>.

Goal #<AT-AIRPLANE AIRPLANE1 BOS-AIRPORT> was chosen.
Goal(s) #<AT-TRUCK PGH-TRUCK PGH-AIRPORT> could have been chosen instead.

To avoid making the wrong decision, PRODIGY has to acquire control knowledge. Our goal is to extract
from the expent the relevant knowledge and cxpress it in the form of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>